
Antisocial Networks: Turning a Social Network

into a Botnet

E. Athanasopoulos1, A. Makridakis1, S. Antonatos1, D. Antoniades1,
S. Ioannidis1, K. G. Anagnostakis2, E. P. Markatos1

1 Institute of Computer Science (ICS)
Foundation for Research & Technology Hellas (FORTH)

{elathan,amakrid,antonat,danton,sotiris,markatos}@ics.forth.gr
2 Institute for Infocomm Research, Singapore

kostas@i2r.a-star.edu.sg

Abstract. Antisocial Networks are distributed systems based on social
networking Web sites that can be exploited by attackers, and directed to
carry out network attacks. Malicious users are able to take control of the
visitors of social sites by remotely manipulating their browsers through
legitimate Web control functionality such as image-loading HTML tags,
JavaScript instructions, etc. In this paper we experimentally show that
Social Network web sites have the ideal properties to become attack
platforms.
We start by identifying all the properties of Facebook, a real-world So-
cial Network, and then study how we can utilize these properties and
transform it into an attack platform against any host connected to the
Internet. Towards this end, we developed a real-world Facebook appli-
cation that can perform malicious actions covertly. We experimentally
measured it’s impact by studying how innocent Facebook users can be
manipulated into carrying out a Denial-of-Service attack. Finally, we ex-
plored other possible misuses of Facebook and how they can be applied
to other online Social Network web sites.

1 Introduction

The massive adoption of social networks by Internet users provides us with a
unique opportunity to study possible exploits that will turn them into platforms
for antisocial and illegal activities, like DDoS attacks, malware propagation,
spamming, privacy violations, etc. We define antisocial networks as a social net-

work, deviously manipulated for launching activities connected with fraud and

cyber-crime.
Social networks have by nature some intrinsic properties that make them

ideal to be exploited by an adversary. The most important of these properties
are: (i) a very large and highly distributed user-base, (ii) clusters of users sharing
the same social interests, developing trust with each other, and seeking access
to the same resources, and (iii) platform openness for deploying fraud resources
and applications that lure users to install them. All these characteristics give
adversaries the opportunity to manipulate massive crowds of Internet users and

force them to commit antisocial acts against the rest of the Internet, without
their knowledge. In this paper we explore these properties, develop a real exploit,
and analyze its impact.

The main contributions of this paper is a first investigation into the potential
misuse of a social network for launching DDoS attacks on third parties. We have
built an actual Facebook application, that can turn its users into a FaceBot. We
used our FaceBot to carry out a complete evaluation of our proof-of-concept at-
tack via real-world experiments. Extrapolating from these measurements along
with popularity metrics of current Facebook applications, we show that own-
ers of popular Facebook applications have a highly distributed platform with
significant attack firepower under their control.

2 Related Work

The structure and evolution of social networks has been extensively studied [18,
9, 11], but little work has been done on measuring real attacks on these sites. The
most closely related work to our paper was done by Lam et al. in [17]. Our work
here extends the idea of Puppetnets by taking into account the characteristics of
a special kind of Internet systems which rely heavily on the social factor: social
network web sites. The authors of [17] omit explaining how they will make their
Web site popular, in order to carry out the attack. We on the other hand are
taking advantage of already popular Web sites like facebook.com. Such sites
prove to be ideal for carrying Puppetnet type attacks.

Jagatic et al. in [16] study how phishing attacks [13] can be made more
powerful by extracting information from social networks. Identifying groups of
people leads to more successful phishing attacks than by simply massively send-
ing e-mails to random people unrelated to each other. However, apart from
scattered blog entries that report isolated attacks (such as malware hosting in
Myspace [4]), there have been no large-scale attacks to social networks, or using
social networking sites, reported or studied so far.

In the space of peer-to-peer systems, there have been a few attacks that
have appeared and have been analyzed by researchers. One may consider a peer-
to-peer system to be similar to a social network in the sense that there are
millions of users that connect to each other forming a network. Gnutella, an
unstructured peer-to-peer file sharing system, has been used in the past as an
attack platform [10]. In a similar fashion, the work in [19, 21] presented how
Overnet and KAD can be misused for launching Denial of Service attacks to
third parties. Finally, in [12], the authors have managed to transform BitTorrent
to a platform for similar attacks.

3 Background

Social Networks. Social networking sites are becoming more popular by the
day. Millions of people daily use social networking sites such as facebook.com,

2

LinkedIn.com, Myspace.com and Orkut.com. Some of them are used for pro-
fessional contacts, e.g. LinkedIn, while others are primarily used for commu-
nication and entertainment. The structure of a social networking site is quite
simple. Users register to the site, create their profile describing their interests
and putting some personal information, and finally add friends/contacts to their
profile. Adding a friend involves a confirmation step from the other party most
of the times. The view of a user’s profile is usually limited to the friends of that
user, unless the user wants the profile to be public. In that case, all users of the
site can view it. Social networking sites also support the creation of groups and
networks.

Facebook is considered to be one of the most popular social networking sites.
It started as a project of a student to keep track of schoolmates but has now
grown up to serve more than 64 million people from around the world, with an
average of 250,000 new registrations per day [2]. Facebook has a very interesting
feature, the Facebook applications. Facebook builders have implemented a plat-
form on top of which developers can build complete applications. In the Facebook

Platform any developer with a good idea and basic programming skills can cre-
ate one. Over 200,000 developers have done so, as reported by Adonomics [1].
Users can add these applications to their profile and invite their friends to add
them too. A constraint put by Facebook is that invitations are limited to up
to 20 friends per day. Typical applications involve solving a quiz, filling ques-
tionnaires, playing games and many more. Up to date, the number of Facebook
applications has surpassed fifteen thousand. Facebook applications can be con-
sidered as XHTML snippets that inherit all properties of web applications.

Puppetnets. Puppetnets [17] exploit the design principles of World Wide Web.
Web pages can include links to elements located at different domains, other than
the one they are hosted at. A malicious user can craft special pages that contain
thousands of links pointing at a victim site. When an unsuspecting user visits
that page, her browser starts downloading elements from the victim site and
thus consuming its bandwidth. The firepower of this attack increases with the
popularity of the malicious page, similar to the slashdot effect [15].

Puppetnets use a number of techniques to make the attacks more effective.
The use of JavaScript permits more flexible and powerful attacks as unsuspect-
ing users can repeatedly download elements from victim sites or perform other
kinds of attacks, such as port scanning and computational attacks. The fire-
power of Puppetnets depends on three main factors. First, the popularity of the
malicious page. Second, the duration of visits to the malicious page. The more
the unsuspecting user stays on the malicious page, the longer the attack takes
place in the background. Third, the bandwidth of unsuspecting users and their
latency to the victim site. These factors determine the number of downloads per
second an attacker can achieve.

3

4 Experimental Evaluation

In this section we experimentally evaluate the firepower of a FaceBot. Specifi-
cally, we explore the effect of placing a malicious Facebook application, which
exports HTTP requests to a victim host. We have conducted experiments, using
a least effort approach. By using the term of least effort we mean that during
the whole study we did the least we could do in terms of spending resources,
adding complexity and enhancing our developments with obscure and hackish
features, which could lead in overestimated results. For example, during the de-
ployment of a Facebook application we did not add special obligatory massive in-

vitation features for boosting the application’s propagation in the social network.
In section 5, based on our experimental results, we extrapolate the firepower of
FaceBot, by examining the popularity of existing Facebook applications.

4.1 Experimental Setup

Our initial vision is to create a first proof-of-concept FaceBot for demonstra-
tion purposes, while at the same time not causing any harm to real Facebook
users. Furthermore, our experiment was conducted using the real social network
website, namely facebook.com.

We created a real-world Facebook application, which we call Photo of the

Day [8], that presents a different photo from National Geographic to facebook
users every day. In order to keep the experiment in a least effort approach,
we didn’t employ any obligatory invitations during its installation in a user’s
profile.3 However, we did announce the application to members of our research
group and we encouraged them to propagate the application to their colleagues.
To our surprise, the application was installed by a significant Facebook popu-
lation, which was completely unaware to us (see our popularity results, later in
this section).

Every time a user clicks on the Photo of the Day application, an image from
the respective service of National Geographic4 appears [7]. However, we have
placed special code in the application’s source code, so that every time a user
views the photo, HTTP requests are generated towards a victim host. More
precisely, the application embeds four hidden frames with inline images hosted
at the victim. Each time the user clicks inside the application, the inline images
are fetched from the victim, causing the victim to serve a request of 600 KBytes,
but the user is not aware of that fact (the images are never displayed). We list
a portion of our sample source code which is responsible for fetching an inline

3 It is very common that Facebook applications require a user to invite a subset of
her friends, and thus advertize the application to the Facebook community, prior
the installation. This practice helps in the further propagation of the application in
Facebook. Typically, a user must announce the application to about 20 of her friends
in order to proceed with the installation.

4 National Geographic has specific terms for content distribution, which are not vio-
lated by this work[6].

4

<iframe name="1" style="border: 0px none #ffffff;

width: 0px; height: 0px;"

src="http://victim-host/image1.jpg?

fb_sig_in_iframe=1&

fb_sig_time=1202207816.5644&

fb_sig_added=1&

fb_sig_user=724370938&

fb_sig_profile_update_time=1199641675&

fb_sig_session_key=520dabc760f374248b&

fb_sig_expires=0&

fb_sig_api_key=488b6da516f28bab8a5ecc558b484cd1&

fb_sig=a45628e9ad73c1212aab31eed9db500a">

</iframe>

Fig. 1. Sample code of a hidden frame, inside a Facebook application, which causes an
image, namely image1.jpg to be fetched from victim-host.

image from a victim host and placing it to a hidden frame inside the Photo of

the Day application, in Figure 1.
For our experiments, the victim Web server which hosts the inline images

is located in our lab, isolated from any other network activity. In the following
subsection we present the results associated with the traffic experienced by our
Web server.

4.2 Attack Magnitude

In Figure 2 we present the number of requests per hour recorded by our Web
server from the time the Photo of the Day application was uploaded to facebook.com
and for a period of a few days. Notice, that the request rate reached a peak of
more than 300 requests/hour after a few days from the publication time. During
the peak day of January 29th, our Web server recorded an excess of 6 Mbit per
second of traffic (see Figure 3). The request rate shown in Figure 2, as well as the
outgoing traffic shown in Figure 3, is purely Facebook related. We can isolate the
packets originating from users accessing facebook.com by inspecting the referer

field5. We further discuss the importance of the referer field in Section 6.
It is important to note that the request rate per hour never fell below a few

tens of request and during peak times it reached a few hundred of requests.
Notice, that depending on the nature of the malicious Facebook application, the
request rate may differ substantially. In our experiment, each user was generating
only four requests towards our Web server per application visit. We further
explore the nature of a malicious Facebook application in Section 5.

It is also interesting to notice that the traffic pattern is quite bursty (see
Figure 3). This is related to the social nature of the attack platform. Users seem
to visit Facebook also in bursty fashion (approximately at the same time). This
is more clearly presented in Figure 4, where we plot the distribution of user inter-
arrival times (the times at which users visit the Photo of the Day application) for

5 http://www.w3.org/Protocols/HTTP/HTRQ Headers.html#z14

5

 0

 50

 100

 150

 200

 250

 300

 350

23/Jan 25/Jan 27/Jan 29/Jan 31/Jan 02/Feb 04/Feb 06/Feb

H
T

T
P

R
eq

ue
st

s

Time

HTTP Requests Recorded per Hour

Fig. 2. The HTTP requests as were
recorded by the victim Web server.

 0

 1

 2

 3

 4

 5

 6

 7

17:00 18:00 19:00 20:00 21:00

M
bi

t/s
ec

Time

Outgoing Traffic recorded in the 29th of January

Fig. 3. Bandwidth use at the victim Web
server during the attack on 29/01/2008.

the 29th of January. We calculated this distribution using the entry points to the
Photo of the Day application as they were recorded by our victim Web server.
The users’ inter-arrival distribution indicates that a typical inter-arrival time has
a period from a few tens of seconds to a few minutes. Note, that during the 29th
of January, according to Figure 8, our proof of concept application recorded 480
Facebook daily active users.

To further verify our feelings about the bursty nature of the traffic we were
experiencing in the victim host, we installed two sensors and captured traffic
emitted by Facebook users. The first sensor was installed in an academic institute
and was able to monitor approximately 120,000 IP addresses. We recorded 100
unique Facebook users in a monitoring period of 1 day. The second sensor was
installed in a /16 enterprise network. We recorded 75 unique Facebook users in
a monitoring period of 5 days. We used the collected traces from these sensors
in order to calculate the user requests’ inter-arrival distribution at Facebook.
We present the results in Figure 5. It is evident that small inter-arrival periods
characterize the requests made by Facebook users. Note, that users arrive in
bursts to their home pages in facebook.com, but this does not immediately imply
that they will use the Photo of the Day application.

To summarize, based on the spontaneous peaks in Figures 2 and 3, and
considering the fact that Facebook users are arriving nearly at the same time
(see Figure 4), we conclude that a malicious Facebook application can absorb
Facebook users and force them to generate HTTP requests to a victim host in
burst mode fashion.

Notice, that our malicious application was absorbing a fixed amount of traffic
from the victim host. An adversary could employ more sophisticated techniques
and create a JavaScript snippet, which continuously requests documents from a
victim host over time. In this way the attack may be significantly amplified. In
Figure 6 we plot typical session times of Facebook users, as were recorded by
our two sensors. Observe that a typical user session of a Facebook user ranges
from a few to tens of minutes.

6

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 50 100 150 200

N
um

be
r

of
 I

nt
er

-a
rr

iv
al

s

Inter-arrival Period (secs)

User Inter-arrival Distribution for the 29th of January

Fig. 4. The distribution of user in-
ter-arrival times at the victim site on
29/01/2008, with over 480 users recorded
as active.

 1

 10

 100

 1000

 10000

 100000

-10 0 10 20 30 40 50 60

N
um

be
r

of
 I

nt
er

-a
rr

iv
al

s

Inter-arrival Period (secs)

User Inter-arrival at Facebook.com Distribution

Sensor 1
Sensor 2

Fig. 5. The distribution of user inter-ar-
rival periods at facebook.com for one day.
Our two sensors recorded 100 and 75
unique users respectively.

 1

 10

 100

 1000

 10000

 100000

 0 50 100 150 200 250 300 350 400 450 500

T
im

e
(s

ec
s)

Session ID

Session Times of Facebook Users

Sensor 1
Sensor 2

Fig. 6. Session times of Facebook users as were recorded by our two sensors. The first
sensor recorded 495 user sessions and the other one recorded 275 user sessions.

4.3 Attack Distribution

Using the IP addresses recorded in the logs of our victim Web server, we tried
to identify the geographical origin of each Facebook user. Our main interest was
to investigate how distributed can an attack based on a social web site, like
facebook.com, be. We used the geoip tool[3], in order to map our collected
IPs to actual countries. We ignored the fact that some Facebook users might be
using some sort of an anonymizing system like TOR [14], because our goal was
not to capture the origin of the users, but the origin of the requests, which were
recorded by our victim host.

In Figure 7 we are marking in black every country from which we recorded
at least one request. It is evident that the nature of a FaceBot, even one that is
a proof of concept, is highly distributed.

4.4 Tracking Popularity

In Figure 8 we explore the popularity of our proof of concept Facebook appli-
cation, as it is measured by Adonomics [1]. Recall that, as we stated multiple

7

Fig. 7. Location of FaceBot hosts. Coun-
tries coloured in black hosted at least one
FaceBot participant.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

26/01 27/01 28/01 29/01 30/01 31/01 01/02 02/02 03/02 04/02

U
se

r
In

st
al

la
tio

ns

Date

Application Popularity

Installations
Daily Active Users

Fig. 8. The popularity of the Photo of the
Day application, as it is tracked by Ado-
nomics.com.

times in this section, we followed a least effort approach, which means that
we did not employed sophisticated methods for advertizing our application to
facebook.com. However, as it is evident from Figure 8, our application was
installed by nearly 1,000 different users in the first few days. This is rather im-
pressive correlating it with statistics related to commodity software downloads.
For example, it took months for the most successful project in SourceForge.com
to reach thousands of downloads6.

5 Attack Firepower

Based on the experimental results from the previous section we proceed to esti-
mate the firepower of a large FaceBot. For this we are going to assume that an
adversary has developed a highly popular Facebook application, which employs
the tricks we presented in the previous sections.

We denote with F (t) the distribution of outgoing traffic a victim Web server
exports, due to Facebook requests, over time. This is essentially the firepower of
a FaceBot. In section 4 we experimentally measured this distribution for a proof
of concept FaceBot and we presented our results in Figure 3. Our aim, in this
section, is to find an analytical expression for F (t).

We denote with aout the outgoing traffic a Facebook application can pull
from a victim host, once the user on that host is tricked into using the mali-
cious application. Even though sophisticated use of client side technologies (like
JavaScript) can make aout a function over time (e.g., a malicious JavaScript
snippet can generate requests towards a victim host in an infinite loop), for
simplicity we assume that aout is a fixed quantity.

We denote with U(t) the number of users accessing this application over time.
It follows that:

F (t) = aoutU(t) (1)

6 eMule Statistics: http://sourceforge.net/project/stats/?group id=53489&ugn=

emule&type=&mode=alltime

8

To estimate U(t), we need the following: (a) the number of active users over
a period P , and (b) an estimation of the users’ inter-arrival times. If we denote
the active users with u(t) and the inter-arrival distribution with ur(t), then:

U(t) =

∫
P

0
u(t)dt

ur(t)
(2)

Assuming that there is a FaceBot based on a highly popular Facebook ap-
plication and that we want to estimate its firepower at time T , FT , we can use
the average of the inter-arrival distribution, and thus:

FT = aout

∫
P

0
u(t)dt

< ur >
(3)

For example, if we have a FaceBot with aout = 10Kbit/sec, which is installed
by 1,000 users, from whom 100 were active in the period of 10 seconds and their
average inter-arrival time was 2 secs, then F(10) = 10Kbit/sec 100

2 = 0.5Mbit/sec.

In Table 1 we list the Top-5 Facebook applications as of early February 2008,
according to Adonomics.com[1]. These applications have from 1 million to more
than 2 millions of daily active users. The user-base of these applications is so
large, that we can assume that the user inter-arrival time follows a uniform
distribution.7 We further assume that an adversary has deployed one of these
applications, which has 2 million of daily active users. That is, assuming uniform
user inter-arrival time, approximately 23 users/sec are using the application. If
the adversary has deployed the malicious application with aout = 1Mbit/sec8,
then the victim will have to cope with unsolicited traffic of 23 Mbit/sec and
during the period of one day will have received nearly 248 GB of unwanted data.

Application Installations Daily Active Users

FunWall 23,797,800 2,379,780

Top Friends 24,955,200 2,245,970

Super Wall 23,274,800 1,861,980

Movies 15,934,700 1,274,780

Bumper Sticker 7,989,700 1,118,560

Table 1. The Top-5 of Facebook applications as of the beginning of February 2008, in
terms of active users. Source: Adonomics.com[1].

7 Having a non-uniform inter-arrival time distribution would further amplify the at-
tack, because the victim host would have to cope with large flash crowd events [15]
in very short periods.

8 The adversary needs to download a file of size of 125 KBytes from the victim, in
order to achieve such an aout value.

9

6 Discussion and Countermeasures

From our analysis in Section 5 we can see that an adversary can take full advan-
tage of popular social utilities, to emit a high amounts of traffic towards a victim
host. However, apart from launching a DDoS attack to third parties, there are
other possible misuses in the fashion of Puppetnets [17]:

– Host Scanning: Using JavaScript, an attacker can make an application that
identifies whether a host has arbitrary ports open. As browsers impose only
few restriction on destination ports (some browsers like Safari even allow
connection to sensitive ports like 25), an attacker can randomly select a host
and a port, and request an object through normal HTTP requests. Based on
the response time, which can be measured through Javascript, the attacker
can figure if the port is alive or not.

– Malware Propagation: An unsuspecting user can participate in malware and
attack propagation. If a server can be exploited by a URL-embedded attack
vector, then malicious facebook applications can contain this exploit. Every
user that interacts with the application will propagate the attack vector.

– Attacking Cookie-based Mechanisms: Similarly to XSS worms, a malicious
application can override authentication mechanisms that are based on cook-
ies. Badly-designed sites that support automated login using cookies suffer
from such attacks.

Finally, there are other possible misuses of facebook.com itself. For example,
an adversary can collect sensitive information of facebook.com users, without
their permission. Facebook.com gives users the opportunity to have their profile
locked and visible only by their contacts. However, a facebook.com application
has full access in all user’s details. An adversary could deploy an application,
which simply posts all user details to an external colluding Web server. In this
way, the adversary can gain access to the personal information of users, who
have installed the malicious application.9

In the rest of this section we propose countermeasures for defending and
preventing a FaceBot based attack.

6.1 Defending against a FaceBot

To defend against a FaceBot, a victim host must filter out all incoming traffic
introduced by Facebook users. Using the referer field of the HTTP requests the
victim can determine whether a request originates from facebook.com or not,
and stop the attack traffic (e.g. by using a NIDS or Firewall system). However,
it is possible for a Facebook application developer to overcome this situation.
With respect to our proof of concept application, which embeds hidden frames
with inline images, the strategy would be to create a separate page to load them
from. For example the source of the inline frame can be:

9 Indeed, this proved to be possible, while this paper was under the review process[5].

10

src="http://attack-host/dummy-page?ref=victim-host/image1.jpg"

In this example the attack host is the Web server where the source code of
the Photo of the Day lives. The dummy-page PHP file contains the following
code:

<?php

if ($_GET["ref"]) { $ref=$_GET["ref"]; }

print("<meta http-equiv=’refresh’

content=’0; url=$ref’>");

?>

By employing this technique, HTTP requests received by the victim host
have an empty referer field, giving the attacker a way to hide her identity. This
is a typical usage of a reflector [20] by the adversary. Notice however, that the
adversary must tunnel the requests to the victim. This means, that the adversary
will also receive all the requests targeting the victim, but she will not have to
actually serve the requests. Practically, the adversary will receive plain HTTP
requests (a few bytes of size each), will have to process them in order to trim
the referer related data and then pass it to the victim. On the other hand, the
victim will have to serve the requests, which, depending on the files the victim
serves, might reach the size of MBytes of information for each server request.

6.2 Preventing a FaceBot

Providers of social networks should be careful when designing their platform and
APIs in order to have low interactions between the social utilities they operate
and the rest of the Internet. More precisely, social network providers should be
careful with the use of client side technologies, like JavaScript, etc. A social
network operator should provide developers with a strict API, which is capable
of giving access to resources only related to the system. Also, every application
should run in an isolated environment imposing constraints to prevent the appli-
cation from interacting with other Internet hosts, which are not participants of
the social network. Finally, operators of social networks should invest resources
in verifying the applications they host. Regarding our application, the Facebook
Platform can cancel the use of fb:iframe tag, as this tag is used to load images
hosted at the victim host. Currently, developers can not use fb:iframe tag on
the profile page of a user. 10 Otherwise, the fb:iframe tag can be handled in
a special manner, as in the case of the img tag. When publishing a page, Face-
book servers request any image URL and then serve these images, rewriting the
src attribute of all img tags using a *.facebook.com domain. This protects the
privacy of Facebook’s users and not allow malicious applications to extract in-
formation from image requests made directly from a the view of a user’s browser.
Thus, if the src attribute of an iframe is an image file (e.g. .jpg, .png, etc.),
the Facebook Platform can handle these frames in a way similar to img tags.

10 http://wiki.developers.facebook.com/index.php/Fb:iframe

11

7 Conclusion

In this paper we presented Antisocial Networks or how it is possible to turn a
social network into a botnet that can be used to carry out a number of attacks.
We developed FaceBot, an application that can run on facebook.com, and carry
out DDoS attacks against any host on the internet. Our analysis involved build-
ing a real-world facebook.com application, conducting an actual attack on our
lab servers, and doing an estimation of the firepower of a FaceBot.

We have shown that applications that live inside a social network can easily
and very quickly attract a large user-base (in the order of millions of users) that
can be redirected to attack a victim host. We experimentally determined the
user-base to be highly distributed, and of a world-wide scale. Finally, we have
shown that the victim of a FaceBot attack may be subject to an attack that will
cause it to serve data of the magnitude of GigaBytes per day.

Acknowledgments

This work was supported in part by the project CyberScope, funded by the
Greek Secretariat for Research and Technology under contract number PENED
03ED440. The work was, also, supported by the Marie Curie Actions - Rein-
tegration Grants project PASS. We thank the anonymous reviewers for their
valuable comments. Elias Athanasopoulos, Andreas Makridakis, Sotiris Ioanni-
dis, Spiros Antonatos, Demetres Antoniades and Evangelos P. Markatos are also
with the University of Crete. Elias Athanasopoulos is also funded from the PhD
Scholarship Program of Microsoft Research Cambridge.

References

1. Facebook Analytics and Advertising. http://adonomics.com.

2. Facebook Statistics. http://www.facebook.com/press/info.php?statistics.

3. Geo IP Tool. http://www.geoiptool.com.

4. Hackers crash the Social Networking Party. http://www.pcworld.com/article/

id,127347-page,1-c,internettips/article.html.

5. Identity ’at risk’ on Facebook. http://news.bbc.co.uk/2/hi/programmes/click
online/7375772.stm.

6. National Geographic Content Usage. http://www.nationalgeographic.com/

community/terms.html#content.

7. National Geographic Photo of the Day Utility. http://photography.

nationalgeographic.com/photography/photo-of-the-day.

8. Photo of the Day. http://www.facebook.com/apps/application.php?id=

8752912084.

9. Y.-Y. Ahn, S. Han, H. Kwak, S. Moon, and H. Jeong. Analysis of Topological
Characteristics of Huge Online Social Networking Sites. In Proceedings of the 16th
International Conference on World Wide Web, May 2007.

12

10. E. Athanasopoulos, K. G. Anagnostakis, and E. P. Markatos. Misusing Unstruc-
tured P2P Systems to Perform DoS Attacks: The Network That Never Forgets. In
J. Zhou, M. Yung, and F. Bao, editors, ACNS, volume 3989 of Lecture Notes in
Computer Science, pages 130–145, 2006.

11. L. Backstrom, D. Huttenlocher, J. Kleinberg, and X. Lan. Group Formation in
Large Social Networks: Membership, Growth, and Evolution. In Proceedings of
the 12th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (KDD06), August 2006.

12. K. E. Defrawy, M. Gjoka, and A. Markopoulou. Bottorrent: Misusing bittorrent
to launch ddos attacks. In Proceedings of the USENIX 3rd Workshop on Steps
Towards Reducing Unwanted Traffic on the Internet (SRUTI), 2007.

13. R. Dhamija, J. D. Tygar, and M. Hearst. Why phishing works. In CHI ’06: Pro-
ceedings of the SIGCHI conference on Human Factors in com puting systems, pages
581–590, New York, NY, USA, 2006. ACM Press.

14. R. Dingledine, N. Mathewson, and P. Syverson. Tor: The Second-Generation
Onion Router. In Proceedings of the 13th USENIX Security Symposium, August
2004.

15. Halavais, A. The Slashdot Effect: Analysis of a Large-Scale Public Conversation
on the World Wide Web. 2001.

16. T. N. Jagatic, N. A. Johnson, M. Jakobsson, and F. Menczer. Social phishing.
Commun. ACM, 50(10):94–100, 2007.

17. V. T. Lam, S. Antonatos, P. Akritidis, and K. G. Anagnostakis. Puppetnets: mis-
using web browsers as a distributed attack infrastructure. In CCS ’06: Proceedings
of the 13th ACM conference on Computer and communications security, pages
221–234, New York, NY, USA, 2006. ACM.

18. A. Mislove, M. Marcon, K. P. Gummadi, P. Drushcel, and B. Bhattacharjee. Mea-
surement and Analysis of Online Social Networks. In Proceedings of the Internet
Measurements Conference (IMC) 2007, 2007.

19. N. Naoumov and K. Ross. Exploiting P2P systems for DDoS attacks. In InfoS-
cale ’06: Proceedings of the 1st international conference on Scalable information
systems, page 47, New York, NY, USA, 2006. ACM Press.

20. V. Paxson. An analysis of using reflectors for distributed denial-of-service attacks.
SIGCOMM Comput. Commun. Rev., 31(3):38–47, 2001.

21. M. Steiner, E. W. Biersack, and T. En-Najjary. Exploiting kad: Possible uses and
misuses. Computer Communication Review, 37(5), 2007.

13

Appendix

Facebook Architecture

Facebook provides all the essentials needed for easy deployment of applications
that live inside the social network itself. A user who wants to build a Facebook
application must simply add the Developer Application11 to her account. The
server side part of the application can be developed in PHP or Java. One major
requirement is the presence of a Web server for hosting the new application.
Using the Developer Application the developer fills out a form and submits the
application. The form has fields, such as the application’s name, the IP address of
the Web server, etc. Typically, after a few days the Facebook Platform Team no-
tifies the developer either that the application was successfully accepted or that
it was rejected. Facebook Platform provides the Facebook Markup Language12

(FBML), which is a subset of HTML along with some additional tags specific
to Facebook. Also, the Facebook Query Language13 (FQL) allows the developer
to use an SQL-style interface to easily query some Facebook social data, such
as the name or profile picture of a user. Finally, Facebook JavaScript14 (FBJS)
permits developers to use it in their applications. All the above tools give an
open API to the developer for easy creation of Web applications that live inside
Facebook and which are freely available to every Facebook user.

From Facebook to FaceBot. To exploit a social site, like Facebook, for launch-
ing DoS attacks, the adversary needs to create a malicious application, which
embeds URIs to a victim Web server. These URIs must point to documents
hosted by the victim, like images, text files, HTML pages, etc. When a user
interacts with the application, the victim host will receive unsolicited requests.
These requests are triggered through Facebook, since the application lives inside
the social network, but they are actually generated by the Web browsers used
by the users that access the malicious application. We define as FaceBot the
collection of the users’ Web browsers that are forced to generate requests upon
viewing a malicious Facebook application. Schematically, a FaceBot is presented
in Figure 9. The cloud groups a collection of Facebook users who browse a ma-
licious application in Facebook. This causes a series of requests to be generated
and directed towards the victim.

One crucial thing to note is that the application is hosted by the devel-
oper. That means that if an adversary wants to develop a malicious application,
they must also host it. In other words, the adversary has to be able to cope
with requests from users that are accessing the application. However, this can
be overcomed using a free hosting service, specifically designed for Facebook
applications.15 But even if such a service were not available, the adversary has

11 http://www.facebook.com/developers/
12 http://wiki.developers.facebook.com/index.php/FBML
13 http://wiki.developers.facebook.com/index.php/FQL
14 http://wiki.developers.facebook.com/index.php/FBJS
15 Joyent Free Accelerator:

http://joyent.com/developers/facebook/

14

to cope with much less traffic than the one that targets the victim. We further
discuss this issue in Section 5.

FaceBot

Facebook.com

Victim

Host

Facebook

User
Facebook

User

Facebook

User

HTTP

Requests

Fig. 9. The architecture of a FaceBot. Users access a malicious application in the social
site (facebook.com) and subsequently a series of HTTP requests are created, which
target the victim host.

15

